Retrieval of Biophysical Vegetation Products from Rapideye Imagery

نویسندگان

  • F. Vuolo
  • C. Atzberger
  • G. D’Urso
  • J. Dash
چکیده

The accurate estimation of canopy biophysical variables at sufficiently high spatial and temporal resolutions is a key requirement for operational applications in the agricultural sector. In this study, recently available multispectral RapidEye sensor data were tested for their operational suitability to estimate canopy biophysical variables in the Italian Campania region. For this purpose, two model inversion methods and two commonly used vegetation indices were applied to estimate leaf area index (LAI), canopy chlorophyll content (CCC) and leaf chlorophyll content (LCC) from a range of crops. The physically based approaches outperformed the empirical methods, with a slightly higher retrieval accuracy of the look-up table (LUT) than of the neural network (NN) approach. However, the NN method performs much faster, rendering it potentially more appropriate for application in large areas. The empirical models showed dependencies of sensor and crops, but still performed reasonable in the estimation of LAI and CCC. Results demonstrated the suitability of RapidEye sensor data to retrieve canopy biophysical variables of agricultural areas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crop Type Classification Using Vegetation Indices of Rapideye Imagery

Cutting-edge remote sensing technology has a significant role for managing the natural resources as well as the any other applications about the earth observation. Crop monitoring is the one of these applications since remote sensing provides us accurate, up-to-date and cost-effective information about the crop types at the different temporal and spatial resolution. In this study, the potential...

متن کامل

An Object-oriented Approach for Agrivultural Land Classification Using Rapideye Imagery

With the improvement of remote sensing technology, the spatial, structural and texture information of land covers are present clearly in high resolution imagery, which enhances the ability of crop mapping. Since the satellite RapidEye was launched in 2009, high resolution multispectral imagery together with wide red edge band has been utilized in vegetation monitoring. Broad red edge band relat...

متن کامل

Evaluation of an Operational Leaf Area Index Retrieval Approach Using Vegetation and Modis Data

An operational method has been proposed to estimate the leaf area index (LAI) from satellite imagery in the framework of EUMETSAT Satellite Application Facility on Land Surface Analysis (LSA SAF). This study evaluates the performance of the LSA SAF LAI retrieval algorithm when prototyped to VEGETATION/CYCLOPES and MODIS reflectances over Europe for the 2000-2003 period. The results indicate tha...

متن کامل

Comparing the Dry Season In-Situ Leaf Area Index (LAI) Derived from High-Resolution RapidEye Imagery with MODIS LAI in a Namibian Savanna

The Leaf Area Index (LAI) is one of the most frequently applied measures to characterize vegetation and its dynamics and functions with remote sensing. Satellite missions, such as NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) operationally produce global datasets of LAI. Due to their role as an input to large-scale modeling activities, evaluation and verification of such datasets...

متن کامل

Comparison of Satellite Imagery and Ground-Based Active Optical Sensors as Yield Predictors in Sugar Beet, Spring Wheat, Corn, and Sunflower

1 The original use of remote sensing using infrared photography for yield variation was conducted by Colwell (1956). Since the launch of the Landsat 1 imaging satellite in 1972 (Mulla, 2013), satellite imagery has been widely used in agriculture for yield prediction and most lately for site-specific N management. Bhatti et al. (1991) used Landsat imagery and auxiliary data to estimate wheat yie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010